Title
Non-normality propagation among latent variables and indicators in PLS-SEM simulations
Document Type
Article
Publication Title
Journal of Modern Applied Statistical Methods
Abstract
Structural equation modeling employing the partial least squares method (PLS-SEM) has been extensively used in business research. Often the use of this method is justified based on claims about its unique performance with small samples and non-normal data, which call for performance analyses. How normal and non-normal data are created for the performance analyses are examined. A method is proposed for the generation of data for exogenous latent variables and errors directly, from which data for endogenous latent variables and indicators are subsequently obtained based on model parameters. The emphasis is on the issue of non-normality propagation among latent variables and indicators, showing that this propagation can be severely impaired if certain steps are not taken. A key step is inducing non-normality in structural and indicator errors, in addition to exogenous latent variables. Illustrations of the method and its steps are provided through simulations based on a simple model of the effect of e-collaboration technology use on job performance.
First Page
299
Last Page
315
DOI
10.22237/jmasm/1462076100
Publication Date
1-1-2016
Recommended Citation
Kock, Ned, "Non-normality propagation among latent variables and indicators in PLS-SEM simulations" (2016). Business Faculty Publications. 67.
https://rio.tamiu.edu/arssb_facpubs/67