Validity of BMI-based body fat equations in men and women: A 4-compartment model comparison

Document Type


Publication Title

Journal of Strength and Conditioning Research


Validity of BMI-based body fat equations in men and women: A 4-compartment model comparison. J Strength Cond Res 32(1): 121-129, 2018-The purpose of this study was to compare body mass index (BMI)-based body fat percentage (BF%) equations and skinfolds with a 4-compartment (4C) model in men and women. One hundred thirty adults (63 women and 67 men) volunteered to participate (age = 23 ± 5 years). BMI was calculated as weight (kg) divided by height squared (m2). BF% was predicted with the BMI-based equations of Jackson et al. (BMIJA), Deurenberg et al. (BMIDE), Gallagher et al. (BMIGA), Zanovec et al. (BMIZA), Womersley and Durnin (BMIWO), and from 7-site skinfolds using the generalized skinfold equation of Jackson et al. (SF7JP). The 4C model BF% was the criterion and derived from underwater weighing for body volume, dual-energy X-ray absorptiometry for bone mineral content, and bioimpedance spectroscopy for total body water. The constant error (CE) was not significantly different for BMIZA compared with the 4C model (p = 0.74, CE = 20.2%). However, BMIJA, BMIDE, BMIGA, and BMIWO produced significantly higher mean values than the 4C model (all p < 0.001, CEs = 1.8-3.2%), whereas SF7JP was significantly lower (p < 0.001, CE = 24.8%). The standard error of estimate ranged from 3.4 (SF7JP) to 6.4% (BMIJA) while the total error varied from 6.0 (SF7JP) to 7.3% (BMIJA). The 95% limits of agreement were the smallest for SF7JP (67.2%) and widest for BMIJA (613.5%). Although the BMI-based equations produced similar group mean values as the 4C model, SF7JP produced the smallest individual errors. Therefore, SF7JP is recommended over the BMIbased equations, but practitioners should consider the associated CE.

First Page


Last Page




Publication Date


This document is currently not available here.